Box-Behnken响应面法优化海藻酸钠mPEG-b-PLGA纳米粒处方工艺

陈婷婷, 李顺英, 秦婷婷, 曾庆冰

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (19) : 1590-1598.

PDF(2252 KB)
PDF(2252 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (19) : 1590-1598. DOI: 10.11669/cpj.2019.19.008
论 著

Box-Behnken响应面法优化海藻酸钠mPEG-b-PLGA纳米粒处方工艺

  • 陈婷婷a,b, 李顺英a,b, 秦婷婷a,b, 曾庆冰a,b*
作者信息 +

Formulation Optimization of Alginate mPEG-b-PLGA Nanoparticles by Box-Behnken Response Surface Method

  • CHEN Ting-tinga,b, LI Shun-yinga,b, QIN Ting-tinga,b, ZENG Qing-binga,b*
Author information +
文章历史 +

摘要

目的 采用Box-Behnken响应面法优化海藻酸钠聚乙二醇-聚乳酸-羟基乙酸共聚物(mPEG-b-PLGA)纳米粒的处方工艺。方法 合成10%mPEG5000-b-PLGA为基质材料,通过双乳剂法制备载胰岛素的海藻酸钠mPEG-b-PLGA纳米粒。选取胰岛素投料比、油相与外水相体积比、乳化剂浓度为考察因素,包封率和载药量为评价指标,采用Box-Behnken响应面法筛选最优处方,对优化所得纳米粒的基本性质和体外释药性能考察。结果 最优处方为:胰岛素投料比14.67∶100,油相与外水相体积比1∶3.32,乳化剂浓度为2.01%。实际制备所得载胰岛素纳米粒包封率为83.61%,载药量为10.90%,与模型预测值接近。平均粒径为(271.80±3.50)nm,Zeta电位值为-54.27 mV具有良好的缓释性能。结论 Box-Behnken响应面法有效可行,可以用于优化海藻酸钠mPEG-b-PLGA纳米粒的处方工艺,优化后的纳米粒有望作为理想的胰岛素缓释载体。

Abstract

OBJECTIVE To optimize the formulation of alginate mPEG-b-PLGA nanoparticles by Box-Behnken response surface method. METHODS Using synthetic 10% mPEG-b-PLGA as nanoparticles matrix materials, the insulin-loaded alginate mPEG-b-PLGA nanoparticles were prepared by modified double emulsion-solvent evaporation method.To optimize the formulation,the mass ratio of insulin to polymer,the volume ratio of oil phase to external water and the concentration of poloxamer 188(F68) were selected as independent variables, with encapsulation efficiency(EE%), loading capacity(LC%) as the dependent variables.The formula was optimized by Box-Behnken design and response surface methodology.The particles size, polydispersity index(PDI), Zeta potential and morphology of optimized nanoparticles were measured by dynamic light scattering(DLS), electrophoretic light scattering(ELS) and transmission electron microscope(TEM), respectively.The in vitro release profile of nanoparticles was investigated. RESULTS =The optimal formulation was as follows:the mass ratio of insulin to mPEG-b-PLGA was 14.67∶100, the oil phase to external water ratio was 1∶3.32 and F68(W/V) concentration was 2.01%, respectively. The entrapment efficiency, the loading capacity, average particles size and Zeta potentials were(83.61±0.38)%,(10.90±0.23)%,(271.8±3.5) nm and(-54.27±2.75) mV, respectively, which correspond closely to the predicted values.The optimized insulin-loaded nanoparticles performed good sustained release property in pH 7.4 medium. CONCLUSION The Box-Behnken design and response surface methodology is an effective and efficient method, which can be applied in the formula optimization of alginate mPEG-b-PLGA nanoparticles preparation.The optimized nanoparticles can be served as a promising insulin or proteins drug nanocarriers for its good sustained release property.

关键词

Box-Behnken / 响应面法 / 纳米粒 / 胰岛素 / 缓释 / 处方优化

Key words

Box-Behnken / response surface method / nanoparticles / insulin / sustained release / formula optimization

引用本文

导出引用
陈婷婷, 李顺英, 秦婷婷, 曾庆冰. Box-Behnken响应面法优化海藻酸钠mPEG-b-PLGA纳米粒处方工艺[J]. 中国药学杂志, 2019, 54(19): 1590-1598 https://doi.org/10.11669/cpj.2019.19.008
CHEN Ting-ting, LI Shun-ying, QIN Ting-ting, ZENG Qing-bing. Formulation Optimization of Alginate mPEG-b-PLGA Nanoparticles by Box-Behnken Response Surface Method[J]. Chinese Pharmaceutical Journal, 2019, 54(19): 1590-1598 https://doi.org/10.11669/cpj.2019.19.008
中图分类号: R944   

参考文献

[1] GUARIGUATA L, WHITING D R, HAMBLETON I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pr, 2014, 103(2):137-149.
[2] DING D, ZHU Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng:C, 2018,(92):1041-1060.
[3] MENON J U, RAVIKUMAR P, PISE A, et al. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater, 2014, 10(6):2643-2652.
[4] ALIBOLANDI M, ALABDOLLAH F, SADEGHI F, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Controlled Release, 2016, 227:58-70.
[5] ALBISA A, PIACENTINI E, SEBASTIAN V, et al. Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm Res Dordr, 2017, 34(6):1296-1308.
[6] GUAN Q, SUN S, LI X, et al. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicrosideand hydroxytyrosol. J Mater Sci:Mater Med, 2016,27(24):1-13.
[7] SONIA T A, SHARMA C P. An overview of natural polymers for oral insulin delivery. Drug Discov Today, 2012, 17(13-14):784-792.
[8] VOZZA G, DANISH M, BYRNE H J, et al. Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. Int J Pharm, 2018, 551(1-2):257-269.
[9] IGLESIAS N, GALBIS E, DíAZ-BLANCO M J, et al. Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny. Int J Pharm, 2018, 550(1-2):429-438.
[10] LIU B L, ZHU Z J, LIU Y Y, et al. Formulation optimization of curcumin- catanionic solid lipid nanoparticles by Box-Behnkendesigns . West China J Pharm Sci(华西药学杂志), 2017,32(5):471-474.
[11] MA Y L, ZHAO F, PANG G X, et al. Optimization of prescription of ambroxol hydrochloride sandwich osmotic pump tablets by box-behnken design-response surface method. Chin Pharm J(中国药学杂志), 2016, 51(12):1006-1013.
[12] LOCATELLI E, COMES FRANCHINI M. Biodegradable PLGA-b-PEG polymeric nanoparticles:synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res, 2012, 14(12):1-17.
[13] ZHANG Y, YUAN C, JIAO J, et al. Preparation of MePEG-PLGA nanoparticles by modified-self-emulsion solvent evaporation method. J Instrum Anal(分析测试学报), 2008,27(9):960-963.
[14] ZHANG K, TANG X, ZHANG J, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Controlled Release, 2014, 183:77-86.
[15] LI J M, LI R R, TIAN J Z. Optimization of formulation and process of paclitaxel mPEG-PDLLA nanoparticles by Box-Behnken response surface methodology. Chin New Drugs J(中国新药杂志), 2018,27(8):927-933.
[16] ZENG H, WANG Z, FANG M, et al. Preparation of pDNA-loaded thiolated chitosan nanoparticles and optimization by using Box-Behnken design and response surface method. J Huaqiao Univ(Nat Sci)(华侨大学学报:自然科学版), 2017,38(5):676-681.
[17] ELMIZADEH H, KHANMOHAMMADI M, GHASEMI K, et al. Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using Box-Behnken statistical design. J Pharm Biomed, 2013, 80:141-146.
[18] CASAULT S, SLATER G W. Systematic characterization of drug release profiles from finite-sized hydrogels. Physica A:Statist Mech Its Appl, 2008, 387(22):5387-5402.
[19] PAPADOPOULOU V, KOSMIDIS K, VLACHOU M, et al. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm, 2006, 309(1-2):44-50.
[20] VILLALOBOS R, CORDERO S, MARIA VIDALES A, et al. In silico study on the effects of matrix structure in controlled drug release. Physica A:Statist Mech Its Appl, 2006, 367:305-318.
[21] GUAN Q X, YU X, LU S W, et al. Formulation and preparation optimization for mPEG-PLGA nanoparticles encapsulated with syringopicroside and hydroxytyrosol. Chin Tradit Pat Med(中成药), 2017,39(12):2508-2512.
[22] ZANG J N, HU Y Q, ZANG J W, et al. Preparation of the oral self-microwmulsion by effective method of Box-Behnken response surface method. West China J Pharm Sci(华西药学杂志), 2018,33(4):359-363.
PDF(2252 KB)

Accesses

Citation

Detail

段落导航
相关文章

/